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Abstract—A number of problems in computer vision require
the estimation of a set of matrices, each of which is defined
only up to an individual scale factor and represents the
parameters of a separate model, under the assumption that the
models are intrinsically interconnected. One example of such a
set is a family of fundamental matrices sharing an infinite
homography. Here an approach is presented to estimating
a general set of interdependent matrices defined to within
separate scales. The input data is assumed to consist of
individually estimated matrices for particular models, which
when considered collectively may fail to satisfy the constraints
representing the inter-model relationships. Two cost functions
are proposed for upgrading, via optimisation, the data of
this sort to a collection of matrices satisfying the inter-
model constraints. One of these functions incorporates error
covariances. Each function is invariant to any change of scale
for the input estimates. The proposed approach is applied to the
particular problem of estimating a set of fundamental matrices
of the form of the example set above. Experimental results are
given which demonstrate the effectiveness of the approach.

Keywords-multi-projective parameter estimation, scale in-
dependence, maximum likelihood, covariance, homogeneous
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I. INTRODUCTION

Many of the fundamental tasks in computer vision involve
using a matrix that describes some projective geometric rela-
tion. It is customary, though somewhat improper, to refer to
any such matrix as a homogeneous matrix, meaning that the
matrix entries are expressed in homogeneous coordinates.'
Each non-zero multiple of a homogeneous matrix represents
one and the same projective entity, so the matrix is usable
and estimable only up to a scale factor. Primary examples of
homogeneous matrices are the fundamental matrix and the
planar homography matrix, both of size 3 x 3. Estimation
of these matrices from a set of image-based measurements
is a well-researched topic [1].

A number of computer vision problems involve manipu-
lation of not just a single homogeneous matrix, but a whole
array of such matrices. Typically, the matrices are intrin-
sically interconnected. For example, one way to initialise
a bundle-adjustment algorithm for projective reconstruction
is to use multiple fundamental matrices for which a set of

"Homogeneous matrices represent, in most cases, non-linear and as
such non-homogeneous projective transformations; moreover, their entries
typically look rather heterogeneous.
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compatible planar homographies, all induced by a single
plane in space, is known [1], [2]. Another example is
detection of non-rigid motion based on the use of multiple
homographies that are induced by two or more planes in the
3D scene [3]. Multiple homogeneous matrices are multi-
projective in nature: they are usable and estimable only to
within individual scale factors. In this paper we address the
problem of estimating a set of interdependent homogeneous
matrices, placing special emphasis on the need to account
for the arbitrariness of individual scale factors. A proper
treatment of the scale factors, guaranteeing that estimates
are not effected by accidental values of these factors, is the
main novelty of the present contribution.

Useful sets of multiple homogeneous matrices are sub-
ject to intra-set constraints. These are independent from
individual-member constraints that may also apply—for
example, every member of a set of fundamental matrices sat-
isfies a separate rank-two constraint. For sets of homography
matrices different intra-set constraints have been identified
in the cases of two and more than two views. Shashua and
Avidan [4] have found that homography matrices induced
by four or more planes in the 3D scene between two views
span a 4-dimensional linear subspace. Chen and Suter [5]
derived a set of strengthened constraints for the case of
three or more homographies in two views. Zelnik-Manor and
Irani [3] have shown that another rank-four constraint applies
to a set of so-called relative homographies generated by two
planes between four or more views. These latter authors have
also derived constraints for larger sets of homographies and
views.

In the case of fundamental matrices several intra-set
constraints can be identified. One particular set arises in
connection with three fundamental matrices linking three
views of the same 3D scene. The intra-set constraints in this
case consist of three across-the-triple epipolar constraints.
In this paper we consider another case where the funda-
mental matrices between consecutive views share an infinite
homography, a situation that occurs when the rotation and
calibration of the camera is constant between consecutive
views.

Estimation of a set of homogeneous matrices usually
proceeds by first generating estimates of individual matrices,
and then by upgrading the resulting matrix set to one satisfy-
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ing the intra-set constraints. Following this pattern, Shashua
and Avidan as well as Zelnik-Manor and Irani use low-
rank approximation under the Frobenius norm to enforce
the rank-four constraint. Chen and Suter enforce their set
of constraints also via low-rank approximation, but then
employ the Mahalanobis norm with covariances of input
homographies. All these estimation procedures involve input
matrices coming with specific scale factors. The underlying
error measures are such that a change of scale factors may
a priori result in a different set of estimates.

The aim of this paper is to present an approach for esti-
mating a set of projection transformation matrices which is
invariant to any particular choice of individual scale factors.
We evolve two cost functions that are scale change insen-
sitive, one of which uses individually estimated matrices as
the only available data, and the other additionally employs
the covariances of the input matrices. The latter function
has a sound statistical basis. We apply both functions to the
problem of estimating fundamental matrices that share an
infinite homography. While such matrices capture a rather
special camera motion, they demonstrate the essence of the
approach.

II. MULTI-PROJECTIVE PARAMETER ESTIMATION

Let X1,...,X; be a collection of k£ x [ matrices. We
envisage these matrices as data points in our problem. Each
X, will be assumed to be known only up to an individual
multiplicative non-zero factor. Let ®1,...,®; be another
collection of k£ x [ matrices. We treat these latter matrices
as improved versions of the X;, still to be determined, that
are subject to constraints correlating the entries of the ®;
across the whole collection. Let X = (X1,...,X) be the
composite datum and let @ = (@1,...,0;) be the com-
posite indeterminate. The general problem we are concerned
with is to fit @ to X so that the intrinsic constraints on ©
are met. Exemplifying this general problem is the following
specific problem:

o Fit a set of 3 x 3 fundamental matrices, with varying
epipoles and a common infinite homography, to a given
set of 3 x 3 matrices.

We describe this problem, which will be of particular interest
to us, in more detail next.

Suppose that a camera moves in steps producing I + 1
views of a 3D scene. For each 1 < 7 < [ + 1, let
P; = K;[R,; | t;] be the 3 x 4 projection matrix for the ith
view, where the 3 x 3 rotation matrix R; and the length-3
translation vector t; represent the Euclidean transformation
between the camera and the world coordinate systems, and
K, is the upper triangular 3 x 3 matrix which encodes the
intrinsic parameters of the camera. Assume that the motion
of the camera is special in that the relative orientation of the
camera between any two successive views is constant,

RiyR'=R (i=1,...,I),
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and also that the camera’s intrinsic parameters do not vary
over the views,

K,=K (i
Then, for each ¢« = 1,...I, the inter-image homography
H i i+1 induced by the plane at infinity is constant, given

by

1,...,1+1).

Heii1 =KinRigR'K; P =KRK ™.

Henceforth we label this common infinite homography as
H. For each ¢ = 1,..., 1, the fundamental matrix F; ;1
relating the ith and (¢ + 1)th views has the form

Fi = [e;] ><Hoo-

Here €/, is the epipole in the (i+1)th view obtained from the
optical centre of the ¢th view, and, for any length-3 vector
a, [a]x is the 3 x 3 antisymmetric matrix such that a x x =
[a] xx for each length-3 vector x. Let F = (Fy,...,F) be
the composite of all the fundamental matrices in question.
With h,, = vec(H,), where vec denotes vectorisation, n =

el ...,e/,hl]T and
N(n) = (Iy(n),.... T (n)), TLi(n) = [€]]xHe,
F can be represented as
F=nN(n). )

Note that F belongs to at most a (3/+49)-dimensional subset
of the 97-dimensional set of all a priori length-I sequences
of 3 x 3 matrices, and that this subset is proper when
I > 2. Thus (1) can be viewed as an intrinsic constraint
on F. Suppose now that an estimate X = (Xy,...,Xy)
of F has been generated in some way. For example, for
each ¢, X; might be an estimate of F; individually obtained
from image data. Our estimation problem is to upgrade X to
O = (O4,...,0) so that (1) holds for some 77 and O is
close to X in a meaningful sense. The essence of the problem
is to find a criterion and effective means for selecting an
appropriate 1.

III. COST FUNCTIONS

The general problem of fitting © to X with constraints
on O is best considered as an optimisation problem. One
immediate issue is proper design of a cost function. Since
the input matrices are known only up to individual scales,
the output matrices should also be determined only to within
individual scales. For any I-tuple A = (A,...,As) of non-
zero numbers, set

XAO = (/\1@1, .. .,)\161).

A correctly defined cost function J should be multi-
homogeneous in ©, namely it should obey

J(xA@) = J(O)



for each I-tuple A with non-zero entries. This property
guarantees that not just a single ©® but a whole family of
equi-valid @’s, differing by multi-factors, minimise the cost
function. Below we present two relevant multi-homogeneous
cost functions, one simple and one more involved.

A. ALS cost function
Foreachi=1,...,1, let

0, = vec(©;), x; =vec(X;),

the length of these vectors being kl. The angle «; between
0; and x; is invariant to multiplying €; and x; by individual
non-zero scalars, and as such gives a natural scale-invariant
discrepancy measure between @; and x;. Taking sinay
instead (note that sinqy; «; for small «;) offers a dis-
crepancy measure which is algebraically more manageable.
The advantage of the latter choice ensues from the identity

~
~

sin oy = 1 — cos?a; = 1 — |10, 72 ||xs]| ~2(6 x;)?,

which, upon introducing the symmetric projection matrix
T
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1 -2
Py =T — [|xi] " xix
where Ij; is the kl x Kl identity matrix, can be rewritten as
.2 —29Tpl
sin” a; = [|0;]| 770, P, 0;.

Now, a natural cost function for our fitting problem can be
put forth as the algebraic least squares (ALS) cost function

I I
JaLs(©®) = sin®a; = > [0 720/ Py 0;.  (2)
i=1 i=1

Note that, for each ¢, the ¢th rightmost summand is a
quotient of two quadratic forms in 8; and so is invariant to
multiplying 6; by a non-zero scalar, with the consequence
of the overall sum being multi-homogeneous in ©.

With its inherent virtue as a multi-homogeneous function,
the ALS cost function is an ad hoc construct lacking a
satisfying statistical basis. A statistically sound cost function
should at least be capable of properly incorporating covari-
ance information regarding the data points X,. Equation (2)
suggests one immediate modification to obtain a desirably
enhanced cost function, and this will be specified next.

B. AML cost function

Continuing to refer to the X;’s via their vectorisations,
suppose that associated with each x; is a kl x kl raw covari-
ance matrix Agi. Any such A?(i is meant to carry the bulk of
information about the relative importance of the individual
entries of x; (see [6], [7] for the raw covariance matrices of
homography estimates and [8], [9] and Section VI for the
raw covariance matrices of fundamental matrix estimates).
Upon upgrading every A?c,; to a corresponding corrected
covariance matrix

A,, =Py A} Py,

X

121

which ensures that the covariance matrix informs about the
spread of, specifically, normalised versions of data points
around x;, one can define an approximated maximum like-
lihood (AML) cost function by setting

I
Jamn(©) = Z ||9i||_291‘TAii0i’

i=1

where AT denotes the Moore—Penrose pseudo-inverse of
A. As it turns out, the expression for Jamp(©) coin-
cides with the squared Mahalanobis distance between any
aggregate of normalised, arbitrarily signed variants of the
x;’s and any aggregate of similar variants of the 6,’s.
Moreover, this distance is an approximation of a more
refined, maximum likelihood-based Mahalanobis distance
between image-based data points underpinning the gener-
ation of the x;’s, and respective points on the geometric
primitives described by the 6;’s (cf. [10]-[15]). With the
AML cost function justified in this way, when one now takes
into consideration the constraints on ®, the corresponding
constrained minimiser of Japr, can be regarded as a more
accurate, on the average, ®-estimate than the ©®-estimate
embodied by the constrained minimiser of Jayg.

IV. COST FUNCTION OPTIMISATION

Let J be a cost function for fitting @ to X of the form

I
7©) =" |6 267 A0,
i=1
where, for each ¢ = 1,...,I, A; is a kl x kl symmetric
matrix. Clearly, the ALS and AML cost functions both
conform to that profile. Suppose that the constraints on ©
take the form

© =N(n), N(n)=((n),...,;(n)),

where 1) is a length-d vector. Upon introducing the function

J'(n) = J(N(n)),

the constrained optimisation problem in question reduces to
that of optimising J’, which is an unconstrained optimisa-
tion problem.

One way for optimising J’ is to use the Levenberg-
Marquardt (LM) method. The starting point is to restate .J’
as

I
T'(m) =Y IE ()7,
i=1
where, foreach 1 =1,...,1,

fi(n) = fi(wi(n)),
f;(0;) = 16;|~'B:6;, B/B; = A,

2

wi(n) = vec(ILi(n)).



Let f'(n) = [f;T(n), ..., f; (n)]". The LM technique makes
use of the kI x (31 +9) Jacobian matrix 0, f’ expressed as

Ot = [Onf] T |-+ | Ot} 1]".
For eachi=1,...,1,
Onft(n) = 0, £i(mi(n))Onmi(n)
with
90.£:(0;) = 1|10, 'B,Pg., Py =1y —6;]720,6..

The algorithm iteratively improves on an initial approx-
imation 7, to the minimiser of J’' by constructing new
approximations with the aid of the update rule

7ln+1 = nn - [H(nn) + AnId)]ilaﬂf/(nn)Tf/(nn)v

where H = 0, T@,,f’ and ), is a non-negative scalar that
dynamically changes from step to step [16].

V. CASE STUDY: ESTIMATING MULTIPLE FUNDAMENTAL
MATRICES

We specifically consider the LM-based estimation of
multiple fundamental matrices. In this case, for each ¢
1,...,1,

mi(n) = vec([ef]xHoo) = (H, ® I3) vec([ef]x)
= (I3 ® [e]] x) vec(H).

Taking into account that vec([e’]x) = Ge’ with G the 9 x 3
matrix defined as

G = [k¢ — kg, k7 — k3, ko — k4],

where, foreach j = 1,...,9, k; is the length-9 vector whose
jth entry is equal to 1 and the remaining entries are all equal
to zero, one readily verifies that

Oormi = (HL ©I3)G, ;=0 (i#j),
On i = I3 @ [ef]x.
Representing, for each ¢ =1,...,1, anf,; as
Ot = [0, f] | -+ | O £ | O ],
one finds furthermore that
o f} = [|Imi]| 7' B/Px, (HL, @ I5)G,
Dufl =0 (j#0),
Ont] = il BiP, (I @ [el] ).
With [“),,f’ thus determined, all that is now needed is a
suitable initialisation for the LM method.

The initialisation procedure which we adopt relies upon
the solution of the following problem:

e Given X = (Xy,...,X/) satisfying

X = xAF 3)
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where A = (\1,..., A7) has exclusively non-zero en-
tries and F = (Fy,...,Fy) is such that F; = [e}] xH
for each ¢, express, to within individual scalar factors,
all the e}’s and h, = vec(H) in terms of X.
A seed ny = e, ..., e, hl o]T for the LM method is
obtained by modifying the solution to the above problem
to reflect the fact that the original data set X admits only
an approximate representation along the lines of (3). We
omit technical details and merely indicate the steps of the
initialisation procedure. These are as follows:
1) For each i, let e}, be the left singular vector of X;
corresponding to the least singular value.
Select i arbitrarily from the range between 1 and I.
For each 17, let

Pl =T [lel|

2)
3)

—2_/ T
€;,0€:,0)

for each 1, j, let

_ Tpl !
a;; = Xz Pe; Oejyo,

and, for each i, set

Aidit = =l |l %ag;, ai.

4) Let

A X | [ A X,

C
E = [le} ol |- [ fe7ol3]"

x|

and set
h, o = vec(ETC).

VI. RESULTS

We now present results of experiments aimed at character-
ising the performance of the proposed estimation methods.
The methods were tested on synthetic data to determine
their performance under varying amount of noise. Repeated
experiments were performed in order to collect results of sta-
tistical significance. The regime adopted was to generate true
corresponding points for three adjacent stereo configurations
and collect performance statistics over many trials in which
random Gaussian noise was added to the image points.
Many configurations were investigated and the results below
are typical. Specifically, we conducted experiments by first
choosing a realistic geometric configuration for the camera
that executes three moves in space. For each of the three con-
secutive pairs of views, the relative rotation and calibration
of the camera was held fixed, whereas the translation offset
was allowed to vary. Next, 100 3D points were randomly
selected in the field of view of the camera at each of its four
positions, and these were then projected onto four 500 x 500
pixel images to provide “true” image points. For any of
the three consecutive pairs of image planes, each image
point in any of the two respective planes was perturbed by
independent homogeneous Gaussian noise at a preset level



(for different series of experiments, different noise levels
applied). In particular, each true image point shared by two
consecutive image pairs was perturbed twice. The resulting
three sets of noise-contaminated pairs of corresponding
points were ensured to be statistically independent. These
three sets were next used as input to FNS, an algorithm
for estimating a single fundamental matrix [10], to produce
three fundamental matrices X; (¢ = 1,2, 3). Denoting by
Al the truncated rank-r pseudo-inverse of A [13], the raw
covariance matrix for the vectorisation x; of X;, based on
image points {m, ; ,mf“ As 12 expressed in homogeneous
coordinates, was taken to be

where

My, =[x 7>

A;
> _(m

a=1

0iX] Ay, X ; +mg XAy, X[mg,)™!

x (mg,m, ; ® m/, ,;m,;)

with the image data covariance matrices Ay, . and A,
assumed to be in their default form diag(1,1,0), corre-
sponding to isotropic homogeneous noise in image point
measurement. The matrices X; and, independently, the same
matrices appended by the covariances A?cl_ were next used
as input to the AIis and AI\A/[L metkpds, resEectively, to
produce estimates GéLS = (QALS,]_, Oars,2,Oars,3) and
Oamr, = (GAML,h @AML}\27 ®AML,§)- In agdition,/e\l max-
imum likelihood estimate Oy, = (®ML,17 @ML,Qa O 3)
was generated directly from the image data {maﬂ-.m;’i i
by minimising the joint re-projection error

3 A
ZZ ma,wfaz) +d( amm:lz
i=1 a=1
over all points m,, ( ai)and m) , = N(P;M,;),
where P = [I | 0} = [Hy | €] for each i, and, M, ;
is a point in 3D space for any a and ¢, with H,, and the
e;’s and M, ;’s free to vary. With m = [mq, ma, ms]’,
N (m) m/ms is a normalisation procedure whose
application ensures that the third coordinate of a given
planar point is unity, and d(m,n) denotes the Euclidean
distance between the planar points m and n that have been
normalised in the above sense. The initial H,, and e;’s were
obtained by using the procedure described in the previous
section. Each initial M, ; was obtained by triangulating
from m,; and m/,; with P and P} defined in terms of
the initial H., and e;. The e;’s, Ho,, and M, ;’s were then
recomputed iteratively by an LM scheme adapted to the task
of minimising the joint re-projection error. With €y, ;’s,

)?)

2In some experiments, to avoid singular configuration, the number A;
of pairs of corresponding points was less than 100.
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Epipolar error vs. Noise
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0.2 0.7 0.8 0.9 1

Figure 1. Comparison of three estimation methods.

Hur,,00, and Mg, q,;’s denoting the terminal values, the
estimates Oy, ; were finally evolved as

@ML,i = [6ML,i]xﬁML,m-

A comparison of the ALS, AML, and ML methods is
shown in Figure 1. For 0= (@1, 0., @3) generated by any
of these techniques, the common distance used to quantify
data-model discrepancies was the symmetric epipolar error

3 A

i=1a=1

i, Om, )2 + d(mo,, © ) )%),
where d now denotes the Euclidean distance between a
point and a line. The ALS and AML schemes were seeded
both with true values of H,, and e;’s, and with estimates
produced by the initialisation procedure described in the
previous section. Upon inspection, it is found that the AML
scheme produces estimates with very competitive epipolar
error values in comparison to the ML method, with the ALS
technique lagging further behind, which matches expecta-
tions.

VII. CONCLUSION

This work proposes an approach to estimating a set of
homogeneous matrices that are subject to individual-member
and intra-set constraints. Two cost functions are presented
for upgrading individually estimated matrices, which do not
necessarily satisfy the underlying constraints, to matrices
satisfying the constraints. Each function is invariant to
possible changes of individual scales of the input matrices.
This scale invariance property is a novel element of design,
differentiating the proposed functions from ones previously
proposed for similar purposes, not guaranteeing to produce
estimates independent of accidental scales of the input. One



of the functions uses the individually estimated matrices as
sole input, the other incorporates also the covariances of the
input matrices. When optimised, the latter function produces
a set of matrix estimates that approximate the maximum like-
lihood estimates of the matrix set. The proposed approach
is tested on the problem of estimating a set of fundamental
matrices that share an infinite homography. The Leverberg-
Marquardt algorithm evolved to optimise the covariance-
enabled cost function for this case produces results showing
that the approach is feasible and efficient.
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